Practice 6

Topic: Research of special points on the phase plane

The example Let a dynamic system is described by a system of equations in the state-space:

$$
\left\{\begin{array}{l}
\dot{x}=A x+B u \tag{*}\\
y=C x
\end{array}\right.
$$

where

$$
A=\left|\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right|, \quad B=\left|\begin{array}{c}
-5 \\
1
\end{array}\right|, \quad C=\left|\begin{array}{ll}
1 & 1
\end{array}\right| .
$$

You should define a type of transition process and define what special point (stationary point) corresponds the phase portrait of the researched system; show geometrical interpretation.

Algorithm and solution

1. We obtain own numbers of a matrix A :

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=0 . \\
& \operatorname{det}\left|\begin{array}{cc}
(-2-\lambda) & 1 \\
1 & (-2-\lambda)
\end{array}\right|=0 ; \\
& (-2-\lambda)^{2}-1=0 \\
& \lambda_{1}=-1 ; \quad \lambda_{2}=-3 .
\end{aligned}
$$

Hence, the movement of the given dynamic system asymptotically is steady across Lyapunov as real parts of roots are negative, i.e. $\operatorname{Re} \lambda_{i}(A)<0$.

Geometrical interpretation:

Fig. 1- The movement of the given dynamic system asymptotically is steady across Lyapunov

The roots of characteristic equation real and negative, therefore, transient process is monotonous and steady.
In fig. 2 the arrangement of roots of characteristic equation of the researched system and the transient process corresponding to them are presented.

Fig. 2 - Arrangement of roots and the process corresponding to them transient process

In this case the phase portrait corresponds to a special point, stable knot (fig.6.12). Here the straight line is a degenerated trajectory $e^{-\alpha t}$

Fig. 3 - The Special point is a steady node
Task Let a dynamic system is described by a system of equations in the statespace:

$$
\left\{\begin{array}{l}
\dot{x}=A x+B u \tag{*}\\
y=C x
\end{array},\right.
$$

where the matrixes A, B and C are set below by variants.
You should define a type of transition process and define what special point (stationary point) corresponds the phase portrait of the researched system; show geometrical interpretation.

Variants:

1)

$$
A=\left|\begin{array}{cc}
-3 & 4 \\
6 & -5
\end{array}\right|, \quad B=\left|\begin{array}{c}
2 \\
-2
\end{array}\right|, \quad C=\left|\begin{array}{l}
1 \\
1
\end{array}\right| .
$$

2)

$$
A=\left|\begin{array}{cc}
-2 & 4 \\
-1 & -5
\end{array}\right|, B=\left|\begin{array}{c}
-1 \\
1
\end{array}\right|, C=\left|\begin{array}{c}
1 \\
1
\end{array}\right| \text {. }
$$

3)

$$
A=\left|\begin{array}{cc}
1 & -1 \\
2,5 & 4
\end{array}\right|, \quad B=\left|\begin{array}{l}
-2 \\
-2
\end{array}\right|, \quad C=\left|\begin{array}{l}
1 \\
1
\end{array}\right| .
$$

4)

$$
A=\left|\begin{array}{cc}
2 & 4 \\
-1 & 5
\end{array}\right|, \quad B=\left|\begin{array}{l}
7 \\
3
\end{array}\right|, C=\left|\begin{array}{c}
1 \\
1
\end{array}\right| \text {. }
$$

5)

$$
A=\left|\begin{array}{ll}
2 & 6 \\
8 & 4
\end{array}\right|, B=\left|\begin{array}{c}
-3 \\
3
\end{array}\right|, C=\left|\begin{array}{l}
1 \\
1
\end{array}\right| \text {. }
$$

6)

$$
A=\left|\begin{array}{ll}
9 & 9 \\
2 & 6
\end{array}\right|, \quad B=\left|\begin{array}{l}
1 \\
6
\end{array}\right|, C=\left|\begin{array}{l}
1 \\
1
\end{array}\right| .
$$

7)

$$
A=\left|\begin{array}{cc}
0 & 9 \\
-1 & 0
\end{array}\right|, \quad B=\left|\begin{array}{l}
5 \\
1
\end{array}\right|, C=\left|\begin{array}{l}
1 \\
1
\end{array}\right| \text {. }
$$

8)

$$
A=\left|\begin{array}{ll}
-1 & -1 \\
2,5 & -4
\end{array}\right|, B=\left|\begin{array}{l}
-3 \\
-2
\end{array}\right|, C=\left|\begin{array}{l}
1 \\
1
\end{array}\right|
$$

9)

$$
A=\left|\begin{array}{cc}
1 & -1 \\
7 & 9
\end{array}\right|, \quad B=\left|\begin{array}{l}
2 \\
3
\end{array}\right|, \quad C=\left|\begin{array}{l}
1 \\
1
\end{array}\right| .
$$

10)

$$
A=\left|\begin{array}{cc}
-4 & 3 \\
3 & -4
\end{array}\right|, B=\left|\begin{array}{c}
-1 \\
2
\end{array}\right|, C=\left|\begin{array}{l}
1 \\
1
\end{array}\right| .
$$

11)

$$
A=\left|\begin{array}{cc}
2 & -5 \\
1 & 6
\end{array}\right|, B=\left|\begin{array}{c}
8 \\
-3
\end{array}\right|, C=\left|\begin{array}{c}
1 \\
1
\end{array}\right| \text {. }
$$

12)

$$
A=\left|\begin{array}{cc}
4 & -7 \\
2 & 8
\end{array}\right|, B=\left|\begin{array}{c}
-5 \\
2
\end{array}\right|, C=\left|\begin{array}{l}
1 \\
1
\end{array}\right| .
$$

